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We derived the theoretical results of soliton interactions in optical fiber with super-Gaussian sliding-
frequency filters. The results demonstrate that the interactions between optical fiber solitons can be
effectively suppressed by super-Gaussian sliding-frequency filters. And the results also show that the
super-Gaussian filter with sliding is more effective in suppressing soliton interactions than that without
sliding.
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One of the main limitations of soliton-based fiber
telecommunications is the interaction between adjacent
pulses. Thus, many researchers have made their efforts to
reduce soliton interaction. For example, it was found that
a temporal synchronous active modulation can effectively
overcome the interactions of solitons[1]. Optical fibers
with random varying birefringence were suggested to can-
cel the interaction of solitons[2]. In photonic crystal
fibers, the interaction between solitons with a dispersive
wave was analyzed experimentally[3]. In addition, by use
of modified group-velocity dispersion, the interaction of
solitons can be changed and overcome[4]. Recently, the
interactions of chirped and chirp-free similaritons have
been researched[5].

The use of Gaussian filters has been demonstrated to
be an effective method to control soliton interactions[6].
In particular, the filters with the center frequency slid
along the transmission line can greatly suppress soli-
ton interactions[7]. The sliding-frequency filters are also
effective in reducing soliton timing jitter in overcoming
the self-frequency shift[7−9]. The mechanism is that soli-
ton follows the filter sliding while linear narrow-band
noise does not[10]. Hence the filter can create a trans-
mission line that is opaque to noise and transparent to
soliton[10−13]. However, the low-order filter (e.g., Gaus-
sian filter) has the drawback that its distributed transfer
function contains higher-order dispersion terms that lead
to a strong asymmetry in the sideband spectrum and an
increase in temporal jitter.

When the order of the filter increases, the damping
coefficient of system decreases, so that an excess gain
is smaller, which is beneficial to stabilize the system[14].
Therefore, higher-order filter (e.g., Butterworth filter)
was proposed to control soliton propagation[14]. How-
ever, Butterworth filters introduce additional losses that
negatively affect the soliton stability. Another higher-
order filter is super-Gaussian filter which can produce
dramatic power enhancement of optical solitons[15]. This
allows smaller timing jitter without sacrificing the signal-

to-noise ratio (SNR)[15,16]. Recently, it has also shown
that super-Gaussian filters can reduce timing jitter and
phase jitter more effectively than the Gaussian filters
do[16,17]. Super-Gaussian filters can be implemented
with holographic fiber gratings[18] and their design is per-
formed by means of the inverse scattering technique[19,20].
The transfer function of super-Gaussian filters in the
form of holographic fiber grating does not introduce any
phase distortion and optimizes the jitter reduction[18].
Thus, super-Gaussian filters are better candidates for
soliton transmission control than the previous filters.

In this letter, by means of two-soliton perturbation the-
ory, we obtain the results of controlling soliton interac-
tions by use of super-Gaussian sliding-frequency filters
(SGSFs). The results show that the interactions be-
tween solitons can be effectively controlled by SGSFs. It
is found that super-Gaussian filter with sliding is more
effective in suppressing soliton interactions than that
without sliding. The numerical examples confirming the
analytical results are given.

In standard soliton units the simplified propagation
equation in the presence of Gaussian and super-Gaussian
sliding-frequency filters is[21]
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where n, a positive integer, determines the order of the
filter, t is the time, α, η and ωf are the excess gain of
the amplifiers, filter strength, and filter peak frequency,
respectively. For n ≥ 2, the filter is super-Gaussian, and
the sliding frequency rate ω′
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where τ = t + ω′

fz
2/2. In Eq. (3) one can separate the

effect of the sliding from that of the filter. For n = 2
(here we consider only n = 2), the usual ansatz for the
soliton v = Asech(Aτ − q) exp(−iΩτ + iσ) is introduced
into Eq. (3), and a pair of couple equations for the soliton
amplitude A and frequency Ω is obtained. The results are
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To have A = 1 (equilibrium point at A = 1), from
Eq. (4), we require that
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By means of two-soliton perturbation theory, we con-
sider the two pulses in Eq. (3):

vj(z, τ) = Ajsech[Aj(τ − qj)] exp[−iΩj(τ − qj) + iσj ],

j = 1, 2. (6)

By combining Eq. (4) with the results of Ref. [22], we
obtain
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where A = (A1 + A2)/2, Ω = (Ω1 + Ω2)/2. p =
(A1−A2)/2 is the amplitude difference, k = (Ω1−Ω2)/2
is the frequency difference, ∆ = q1 − q2 > 0 is the pulse
separation, and δ = ∆Ω + σ is the phase difference,
σ = σ1 − σ2.

By setting η = 0.15 and ω′

f = 0.05[7,11], one obtains
Ωa = 0.18 and α = 0.08 from Eq. (5) for a fixed point
of the one-soliton solution with Aa = 1. Figure 1 shows
examples of solutions of Eq. (7) with the same initial
values of Ω = p = k = σ = 0, A = 1, and different initial
pulse separations ∆0 = 7.6 (solid curve), ∆0 = 6 (dash

Fig. 1. Perturbative evolution of (a) two-soliton separation ∆,
(b) amplitude difference p, (c) frequency difference k, and (d)
phase difference δ. ∆0 = 7.6 (solid curve), ∆0 = 6 (dashed
curve) and ∆0 = 4 (dotted curve).

curve) and ∆0 = 4 (dotted curve) at z = 0, in the
distance range of z = 0 − 100. As can be seen from
Fig. 1(a), the pulse separation ∆ remains almost con-
stant for ∆0 = 7.6. But for the input pulse separation
smaller than a certain critical value (here ∆0 = 4), the
initial interaction is too strong, and the pulse separa-
tion settles into the equilibrium value ∆ ≈ 8.3. In fact,
Figs. 1(b) and (c) show that the amplitude differences p
and the frequency difference k rapidly oscillate around
zero and the phase difference δ changes linearly with z
[see Fig. 1(d)], which further provides a demonstration to
the control of soliton interactions as shown in Fig. 1(a).
Since the two-soliton interaction is attractive for in-phase
soliton and repulsive for π out-of-phase soliton, the rapid
linear change of δ in Fig. 1(d) averages the soliton inter-
action to zero. Thus, the soliton interaction is effectively
suppressed.

To further confirm the above theoretical results, we
perform the numerical simulations for initial separations
∆0 = 7.6 and 4. We consider the initial condition

u(t, z = 0) = ωf [sech(t − ∆0/2) + sech(t + ∆0/2)]. (8)

By setting the typical value of other parameters as[8]:
λ = 1.55 µm, D = −1 ps/(km·nm), 1.763T0 = 20 ps, the
amplifier spacing za = 50 km, the loss is 0.2 dB/km, we
get the dispersion length LD = 201 km. Figure 2 shows
the evolutions of two-soliton interaction with SGSFs for
∆0 = 7.6 and ∆0 = 4. From Fig. 2, we find that the the-
oretical results based on Eq. (7) shown in Fig. 1(a) are
well confirmed by the numerical simulations displayed
in Figs. 2(a) and (b), respectively for initial separations
∆0 = 7.6 and 4.

Finally we also give the evolution of two-pulse inter-
action for ∆0 = 7.6 with super-Gaussian filters without
sliding (i.e., ω′

f = 0). The parameters are η = 0.15,
ω′

f = 0 and α = 0.07. Figure 3(a) shows the evolution of
two-soliton interaction without sliding for ∆0 = 7.6 bas-
ing on Eq. (7), which is in agreement with the simulation
shown in Fig. 3(b). From Fig. 3, we realize that the col-
lision distance is approximately at z = 80 for ∆0 = 7.6
with super-Gaussian filter without sliding. This shows
super-Gaussian filter with sliding can suppress soliton
interactions more effectively than that without sliding.
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Fig. 2. Two-soliton interaction with SGSFs for (a) ∆0 = 7.6
and (b) ∆0 = 4.

Fig. 3. Two-soliton interaction without sliding for ∆0 = 7.6.
(a) Evolution of two-soliton interaction; (b) contour plot of
computer simulation corresponding to (a). The parameters
are η = 0.15, ω′

f = 0, and α = 0.07.

In conclusion, we demonstrate that SGSFs can fully
suppress the interactions between solitons in optical
fiber. By comparing with the case of without sliding, we
find that the super-Gaussian filter with sliding is more
effective in suppressing soliton interactions. Since super-
Gaussian filter has more merits than Gaussian filters as
mentioned above, this method of controlling soliton inter-
actions would be more promising, and permit an all-fiber
system that is perfectly compatible with wavelength-
division multiplexing (WDM). Our results are also ex-
pected to be applied in other types of solitons[23,24].
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